more volumes of rotation!

In Exercises 1-18, sketch the region bounded by the graphs of the given equations and determine the area of the region.

1.
$$y = \frac{1}{x^2}$$
, $y = 0$, $x = 1$, $x = 5$

2.
$$y = \frac{1}{x^2}$$
, $y = 4$, $x = 5$

3.
$$y = \frac{1}{x^2 + 1}$$
, $y = 0$, $x = -1$, $x = 1$

4.
$$y = 1 - \frac{x}{2}$$
, $y = x - 2$, $y = 1$

5.
$$x = y^2 - 2y$$
, $x = 0$

6.
$$x = y^2 - 2y$$
, $x = -1$, $y = 0$

7.
$$y = x$$
, $y = x^3$

8.
$$x = y^2 + 1$$
, $x = y + 3$

9.
$$y = x^2 - 8x + 3$$
, $y = 3 + 8x - x^2$

10.
$$y = x^2 - 4x + 3$$
, $y = x^3$, $y = 0$

5.
$$x = y^2 - 2y$$
, $x = 0$
6. $x = y^2 - 2y$, $x = -1$, $y = 0$
7. $y = x$, $y = x^3$
8. $x = y^2 + 1$, $x = y + 3$
9. $y = x^2 - 8x + 3$, $y = 3 + 8x - x^2$
10. $y = x^2 - 4x + 3$, $y = x^3$, $x = 0$
11. $y = \sqrt{x - 1}$, $y = 2$, $y = 0$, $x = 0$

12.
$$y = \sqrt{x-1}$$
, $y = \frac{x-1}{2}$

13.
$$\sqrt{x} + \sqrt{y} = 1$$
, $y = 0$, $x = 0$

14.
$$y = x^4 - 2x^2$$
, $y = 2x^2$
15. $y = e^x$, $y = e^2$, $x = 0$

15.
$$y = e^x$$
, $y = e^2$, $x = 1$

16.
$$y = \csc x$$
, $y = 2$ (one region)

17.
$$y = \sin x$$
, $y = \cos x$, $\frac{\pi}{4} \le x \le \frac{5\pi}{4}$

18.
$$x = \cos y$$
, $x = \frac{1}{2}$, $\frac{\pi}{3} \le y \le \frac{7\pi}{3}$

In Exercises 19-26, find the volume of the solid generated by revolving the plane region bounded by the given equations about the indicated line.

19.
$$y = x$$
, $y = 0$, $x = 4$

- (a) the x-axis
- (b) the v-axis
- (c) the line x = 4
- (d) the line x = 6

20.
$$y = \sqrt{x}, y = 2, x = 0$$

- (a) the x-axis
- (b) the line y = 2
- (c) the y-axis
- (d) the line x = -1

21.
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

- (a) the y-axis (oblate spheroid)
- (b) the x-axis (prolate spheroid)

$$\frac{22}{a^2} + \frac{y^2}{b^2} = 1$$

- (a) the y-axis (oblate spheroid)
- (b) the x-axis (prolate spheroid)

23.
$$y = \frac{1}{x^4 + 1}$$
, $y = 0$, $x = 0$, $x = 1$, revolved about the

24.
$$y = \frac{1}{\sqrt{1+x^2}}$$
, $y = 0$, $x = -1$, $x = 1$, revolved about

25.
$$y = -x^2 + 6x - 5$$
, $y = 0$

- (a) the x-axis (b) the y-axis
- 26. $y = e^{-x}$, y = 0, x = 0, x = 1, revolved about the